Skip to contents

Create a (templated) risk calculator for www.riskcalc.org, optionally populating using an existing model object

Usage

risk_calculator(...)

# Default S3 method
risk_calculator(app_name = NULL, app_directory = NULL, ...)

# S3 method for class 'glm'
risk_calculator(
  model,
  app_name = NULL,
  app_directory = NULL,
  title = "",
  citation = "",
  label = "Predicted Value",
  label_header = "Result",
  value_header = "Value",
  format = NULL,
  labels = NULL,
  levels = NULL,
  placeholders = NULL,
  ...
)

# S3 method for class 'coxph'
risk_calculator(
  model,
  time,
  app_name = NULL,
  app_directory = NULL,
  title = "",
  citation = "",
  label = "Survival Probability",
  label_header = "Result",
  value_header = "Value",
  format = NULL,
  labels = NULL,
  levels = NULL,
  placeholders = NULL,
  ...
)

Arguments

...

Generic arguments

app_name

Application name (e.g., "AppExample" for www.riskcalc.org/AppExample. If no name is provided, a generic name "riskcalc_app" is used.

app_directory

Location to export the application. If none provided, defaults to the working directory.

model

A glm or coxph object

title

Title for risk calculator

citation

Citation(s) and author information

label

Label for the calculated value

label_header

Header label for the result descriptor

value_header

Header label for the result value

format

Function to format the predicted value for display

labels

Named character vector specifying labels for any inputs

levels

Named list of named character vectors specifying labels for any factor levels

placeholders

Named character vector specifying range limits for numeric input variables (of the form c(var="<min>-<max>")). Invokes calls to validate enforcing the limits.

time

Single time point to calculate survival probability (see summary.survfit)

Value

A shiny application

Examples

library(survival)

# Make a data set
dat <- gbsg
dat$meno <- factor(dat$meno)

# Build a model
mod <-
  coxph(
    formula = Surv(rfstime, status) ~ age + meno,
    data = dat
  )

# Time point of interest
time <- median(dat$rfstime) # 1084

# Create the risk calculator
if (FALSE) { # \dontrun{
risk_calculator(
  model = mod,
  time = time,
  app_name = "BreastCancer",
  app_directory = getwd(),
  title = "Risk of Death or Recurrence in Breast Cancer",
  citation =
    paste0(
     "Patrick Royston and Douglas Altman, External validation of a Cox prognostic",
     "model: principles and methods. BMC Medical Research Methodology 2013, 13:33"
    ),
  label_header = "`Probability Of Death or Recurrence`",
  label = paste0("At time = ", time),
  labels = c(age = "Age (years)", meno = "Menopausal Status"),
  levels = list(meno = c(`0` = "Premenopausal", `1` = "Postmenopausal")),
  placeholders = c(age = "21-80"),
  format = function(x) paste0(round(100 * (1 - x), 2), "%")
)
} # }